By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
IndebtaIndebta
  • Home
  • News
  • Banking
  • Credit Cards
  • Loans
  • Mortgage
  • Investing
  • Markets
    • Stocks
    • Commodities
    • Crypto
    • Forex
  • Videos
  • More
    • Finance
    • Dept Management
    • Small Business
Notification Show More
Aa
IndebtaIndebta
Aa
  • Banking
  • Credit Cards
  • Loans
  • Dept Management
  • Mortgage
  • Markets
  • Investing
  • Small Business
  • Videos
  • Home
  • News
  • Banking
  • Credit Cards
  • Loans
  • Mortgage
  • Investing
  • Markets
    • Stocks
    • Commodities
    • Crypto
    • Forex
  • Videos
  • More
    • Finance
    • Dept Management
    • Small Business
Follow US
Indebta > News > The next critical mineral source could be volcanic soup
News

The next critical mineral source could be volcanic soup

News Room
Last updated: 2024/05/08 at 2:53 AM
By News Room
Share
6 Min Read
SHARE

Stay informed with free updates

Simply sign up to the Science myFT Digest — delivered directly to your inbox.

The writer is a science commentator

Volcanoes house more than molten rock. Alongside the magma sits a mysterious substance called magmatic brine, a mineral-rich soup that collects underneath both active and dormant volcanoes. Geologists are now exploring whether these deep subterranean pools can be tapped for dissolved treasure such as lithium, copper and cobalt. The extraction could be powered by geothermal energy, leading some scientists to call it “green mining”. 

Drilling into volcanoes would be a technically challenging and potentially seismic twist on the net zero minerals rush but, given the ethical and environmental concerns linked to mining on land and at sea, the prospect is justifiably attracting geological and commercial interest. Sub-volcanic brine mining could also be of strategic geopolitical importance, by expanding the supply of critical minerals and breaking the stranglehold enjoyed by China.

Magma, housed in a chamber beneath a volcano, releases metal-rich gases that rise towards the Earth’s surface. As they rise, the pressure drops; the gases then separate into steam and brine. The steam belches out of the volcano; the brine, which retains most of the minerals, collects in the rocks. These brine “lenses”, so-called because of their distinctive shape, tend to settle about two to four kilometres beneath the surface.

Jon Blundy, an earth scientist at Oxford university, calls these magmatic brine lenses “liquid ore”. He and colleagues have estimated that a single lens formed over 10,000 years could contain 1.4 megatonnes of copper. The exact balance of precious metals, base metals, lithium and rare earth minerals dissolved within depends on the location and type of volcano, he told the Royal Academy of Engineering magazine Ingenia recently. But he added that “this would be a viable alternative to scraping polymetallic nodules off the seabed — and it would do less damage to vulnerable ecosystems”. Samples of volcanic vapours collected by drone, plus volcanic surface outflows or deposits, can point to the metals likely to lie beneath.

With the minerals already in solution, the brine requires less processing, and creates less waste, than land-mined material. In traditional copper mining, for example, around 99 per cent of the crushed rock is waste.

Shallower oilfield brines, produced by drilling for oil, are also attracting commercial interest. The Smackover formation in Arkansas, for example, has long been exploited for fossil fuels and is already pumped for its bromine-rich brine. This also contains enough lithium to make processing worthwhile, given rising mineral prices and existing extraction infrastructure. ExxonMobil is drilling its first lithium well there, with production due to start in 2027. Lithium is also currently derived from brine deposits found underneath salt flats in countries like Chile and Bolivia. 

Geothermal plants, which involve drilling at depth, produce geothermal brine; once seen as a byproduct, these brines are now regarded as worth exploiting. Companies in Cornwall in south-west England, for example, are currently exploring how to best capture the metals and minerals from a local geothermal plant.

Magmatic brine, though, is the bigger, deeper, shinier prize, boasting higher concentrations of valuable minerals with fewer impurities. Some geothermal plants offer a conduit for reaching this sub-volcanic booty. As Ingenia reports, different groups are exploring the concept of recovering magmatic brine from geothermal energy sites in Japan, New Zealand, Iceland and Germany.

The engineering challenge is immense: finding ways of drilling boreholes up to 4km down into rocks as hot as 400C; protecting wells from collapse and corrosion by the highly acidic fluid; and guarding against the metals being prematurely deposited, like limescale inside a kettle, on their long journey up.

Even if these are solved, further obstacles await. The brine might contain toxic elements like Mercury, which require safe disposal; the seismic consequences of reinjecting the metal-stripped fluid back into the ground remain unknown. Re-injection is not dissimilar to techniques used in fracking, which can induce local tremors. Blundy is working with the university’s Oxford Martin School on a test project to co-develop geothermal power and brine mining on the Caribbean island of Montserrat.

It is a bold and risky plan, to dive into these mountains of fire to pluck treasure from the roiling fluid. But with 1,500 volcanoes dotted around the planet and critical minerals for the energy transition running low, the payback could be explosive.

 

Read the full article here

News Room May 8, 2024 May 8, 2024
Share this Article
Facebook Twitter Copy Link Print
Leave a comment Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Finance Weekly Newsletter

Join now for the latest news, tips, and analysis about personal finance, credit cards, dept management, and many more from our experts.
Join Now
Markets are in risk-off mode: Some of the ‘bloom is off the rose’ for AI, strategist says

Watch full video on YouTube

Why Iran Is Moving Oil Markets

Watch full video on YouTube

Why 2026 could be a good setup for stocks, bitcoin slides below $85K

Watch full video on YouTube

Why Everyone’s Suddenly Talking About Private Credit

Watch full video on YouTube

Golden Buying Opportunities: Deeply Undervalued With Potential Upside Catalysts

This article was written byFollowSamuel Smith has a diverse background that includes…

- Advertisement -
Ad imageAd image

You Might Also Like

News

Golden Buying Opportunities: Deeply Undervalued With Potential Upside Catalysts

By News Room
News

NewtekOne, Inc. (NEWT) Q4 2025 Earnings Call Transcript

By News Room
News

Tesla lurches into the Musk robotics era

By News Room
News

Keir Starmer meets Xi Jinping in bid to revive strained UK-China ties

By News Room
News

Canadian Pacific Kansas City Limited (CP:CA) Q4 2025 Earnings Call Transcript

By News Room
News

SpaceX weighs June IPO timed to planetary alignment and Elon Musk’s birthday

By News Room
News

Japan’s discount election: why ‘dirt cheap’ shoppers became the key voters

By News Room
News

Logitech International S.A. (LOGI) Q3 2026 Earnings Call Transcript

By News Room
Facebook Twitter Pinterest Youtube Instagram
Company
  • Privacy Policy
  • Terms & Conditions
  • Press Release
  • Contact
  • Advertisement
More Info
  • Newsletter
  • Market Data
  • Credit Cards
  • Videos

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

I have read and agree to the terms & conditions
Join Community

2023 © Indepta.com. All Rights Reserved.

Welcome Back!

Sign in to your account

Lost your password?